网站地图联系我们English中国科学院
 
  新闻动态
  您现在的位置:首页>>新闻动态>>重要新闻
青岛能源所制备出新型纳米液态金属电子墨水和智能柔性导电器件
2019-08-27 | 编辑: | 【 】| | 供稿部门:仿生智能材料研究组
    

  随着电子科技的高速发展,人们生活水平的不断提高,柔性电子器件的需求与日俱增。柔性电子技术需要电子器件具有柔性、可拉伸性、生物相容性等诸多新特性。液体金属(Liquid Metal, LM)完美结合了液体的形变能力与金属的导电能力,而且具有良好的化学稳定性和优异的生物相容性,是理想的柔性电路材料。然而,LM表面张力极大(例如镓铟合金(其中74.5 wt% Ga和25.5 wt %In),624 mN m1),难以加工,也难以与其它基底等材料复合,大大限制了LM在柔性电子领域的实际应用。

  青岛能源所李朝旭研究员带领的仿生智能材料研究组,通过将LM在海藻酸盐溶液中超声处理,制备成包覆有海藻酸盐微凝胶的LM微纳液滴。在超声的过程中海藻酸盐不仅可以通过羧基与Ga3+配位促进粒径的降低,而且可以螯合Ga3+形成微凝胶,从而抑制Ga3+的进一步释放,提高了材料的生物相容性。包覆海藻酸盐微凝胶的LM分散液不仅增加了胶体稳定性和化学稳定性,还可以大幅增加其与柔性基底的亲和性,可用于电子墨水。虽然微纳液滴组成的电路由于氧化层外壳呈现绝缘状态,但是可以通过外加压力的方法恢复其导电性(4.8×105 S m–1)。这种电路可应用于可穿戴微电路、电热驱动器和电子皮肤等领域(图1)。相关成果已发表在Advanced Functional Materials (Adv. Funct. Mater. 2018, 28,1804197)上。

  图1. 海藻酸盐辅助超声制备LM纳米液滴及应用

  由于LM微纳液滴表面存在氧化层或者稳定剂,以其沉积的电路需要通过外加压力、激光、高温等处理恢复其导电性,这些后处理技术不仅耗费能量,而且在应用上存在诸多局限性。该研究组通过研究发现,在生物质纳米纤维(Nanofibers, NFs)(例如:纤维素NFs、甲壳素NFs、蚕丝NFs等)的水分散液中超声LM,可以得到稳定分散的LM微纳液滴。常温常压下干燥分散液,LM微纳液滴能够烧结成连续的液体金属导电薄膜(图2)。深入研究表明,生物基NFs可能具有三个方面的作用:第一,生物基NFs具有丰富的亲水基团(例如羟基、羧基等),可以在超声过程中与Ga3+交联,降低液态金属的粒径和增加液态金属液滴的胶体稳定性;第二,生物基NFs在蒸发过程中可以产生很高的毛细作用力,进而破坏LM微纳液滴外面包覆的壳层;第三,增大液态金属层对基底的粘附力,使其可以稳定附着在玻璃、聚对苯二甲酸乙二酯(Polyethylene terephthalate, PET)、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(Styrene-ethylene-butene-styrene block copolymer, SEBS)、聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)、油纸等多种材质表面。基于蒸发烧结制备的薄膜或者涂层材料具有柔性、高反射率、可伸缩导电性(伸长率达200%)、良好的电磁屏蔽效果、生物降解性和对湿度、光、电具有超快的刺激响应性等特点,蒸发烧结的方法可广泛应用于微电路、传感、可穿戴设备和柔性机器人等柔性电子学领域。相关成果发表于近期的Nature Communications(Nat. Commun. 2019, 10, 3514)上。

  上述研究获得国家自然科学基金(Nos.21474125, 51608509)、山东省杰出青年基金(Nos. JQ201609)、山东省博士基金(ZR2016EEB25)、研究所一三五重点培育项目等项目的支持。(文/图 李现凯)

  图2. 生物质NFs辅助超声制备LM微纳液滴及烧结展示

  相关链接:

  1. https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201804197

  2. https://www.nature.com/articles/s41467-019-11466-5

 
  评 论

2006 - 2018 中国科学院 版权所有 京ICP备05002857号/鲁ICP备12003199号-2 京公网安备110402500047号 
地址:山东省青岛市崂山区松岭路189号 邮编:266101 Email:info@qibebt.ac.cn